HOCHSCHULE HANNOVER

UNIVERSITY OF APPLIED SCIENCES AND ARTS

-

Fakultät II Maschinenbau und Bioverfahrenstechnik

Plasma4Bio2K

Einsatz innovativer Plasmatechnologie für biobasierte und nachhaltige Kunststoffe

Chayenne Witte, M. Sc. 30.10.2025

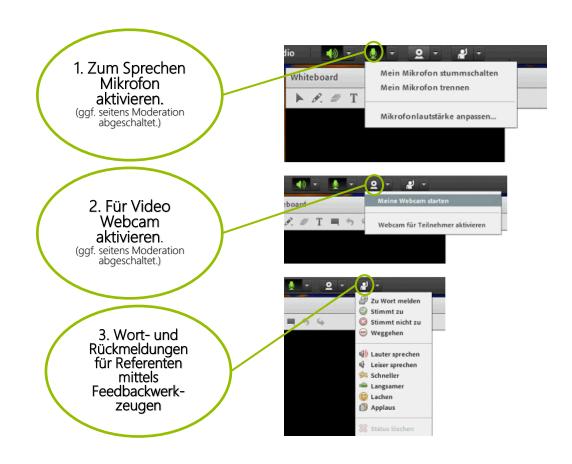
Projektverantwortliche: Dipl.-Ing. (FH) Marco Neudecker, Chayenne Witte, M. Sc.

aus der IfBB-Webinarreihe: "Biowerkstoffe im Fokus!"

unter der Leitung von

Prof. Dr.-Ing. Andrea Siebert-Raths

Moderation: Dr. Lisa Mundzeck



Ablauf

- Dauer ca. 20 Minuten
- Webinar wird aufgezeichnet
- Fragen während des Vortrags: bitte das Modul "Chat" nutzen
- Fragen werden gern am Ende des Vortrags beantwortet

Eckdaten zum Projekt Plasma4Bio2K

Projekttitel	Innovative Plasmatechnologie für haftungs- und eigenschaftsop Zweikomponentenspritzguss biobasierter und nachhaltiger Kun	
Laufzeit	01.05.2025-30.04.2027	
Projektträger	Projektträger Jülich (PTJ)	GEFÖRDERT VOM Bundesministerium für Bildung
Projektleitung	Prof. DrIng. Andrea Siebert-Raths	und Forschung
Projektfinanzierung	Bundesministerium für Bildung und Forschung	
Projektbearbeitung	DiplIng. (FH) Marco Neudecker, Chayenne Witte, M. Sc.	Projektträger Forschungszentrum

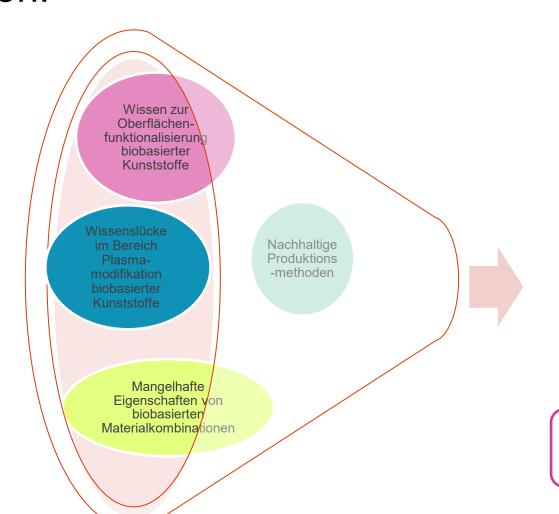
H/W<

- ➤ Entwicklung spezifischer Plasmaquellenkonzepte
- Studien zu Wirkmechanismen der Plasmabehandlung auf Oberflächen
- Ausstattung im Bereich Plasma- und Oberflächendiagnostik

- Teil der Hochschule Hannover
- ➤ Entwicklung, Verarbeitung und Nutzung von biobasierten Kunststoffen und Bioverbundwerkstoffen
- ➤ Betrachtung von Kreislaufwirtschaft und Nachhaltigkeit

Plasma4Bio2K

- Unternehmen mit Spezialisierung auf Entwicklung fortschrittlicher Plasma- und Plasmabeschichtungstechnologien
- Umsetzung in Produktionsmaßstab
- Assoziierter Partner



- Vertriebsunternehmen für verschiedeneMundhygieneartikel
- Fokus auf Marktanalyse, um Kundenstamm zu erhalten und auszubauen

zahnheld

Motivation:

Quelle: Viviendo

Ziel: Prototyp eines biobasierten Zahnbürstenkopfes

Überblick der Projektstruktur

- Plasmatechnologieentwicklung
- Auswahl und Kombination von biobasierten Kunststoffen
- Einsatz im 2K-Spritzguss
- Erstellung Material- und Handlungsbibliothek

Grundlagenforschung

Industrialisierung

- Übertragung auf industrielle Maßstäbe; standardisierte Verarbeitung
- Festlegung Materialkombination
- Seriennahes
 Musterträgerkonzept

- Marktanalyse
- Nachhaltigkeitsanalyse

Markteinführungskonzepte

Potential und Herausforderung bei Arbeit mit biobasierten Kunststoffen

Potentiale

Herausforderungen

Nutzung erneuerbarer Ressourcen

Verringerung von Treibhausgasemissionen und Energieverbrauch

Abfallminimierung durch vielfältige Entsorgungsmöglichkeiten

Veränderte Materialeigenschaften

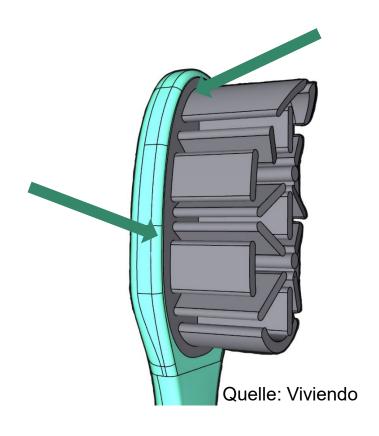
Hohe Produktionskosten

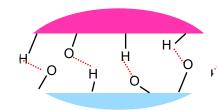
Rohstoffkonkurrenz

Infrastruktur der Entsorgung

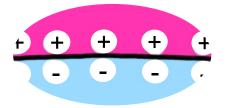
Woher kommen veränderte Materialeigenschaften?

Selbst wenn die chemische Struktur von biobasierten Kunststoffen und erdölbasierten Kunststoffen gleich ist, haben:


- ➤ Herstellungsverfahren
- > Reinheit
- > Additive
- Verarbeitung


einen Einfluss auf die Eigenschaften

Dies wirkt sich ebenfalls auf die Materialkombination aus!


Materialkombinationen in einer Zahnbürste

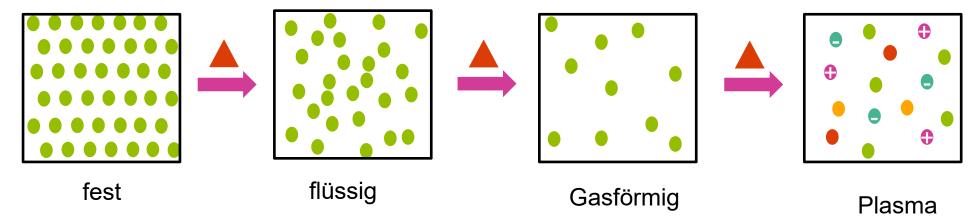
Wasserstoffbrückenbindungen

Elektrostatische Wechselwirkungen

Mikromechanische Verklammerung

Warum werden überhaupt Materialkombinationen benötigt?

Zahnbürstenkopfelemente haben verschiedene Funktionen:


- > Halterung: Steifes Material zur effizienten Kraftübertragung und Stabilität bei hoher Frequenz
- Borsten: biegsames Material, um sich an Zähne und Zahnzwischenräume anzupassen, Schutz Zahnschmelzabtragung
- ➤ Trägerplatte: Verankerung der Borsten
- > Soft Touch-Elemente: Schutz das Mundinnenraums vor Verletzungen

Ein Material kann nicht all diese Anforderungen gleichzeitig erfüllen!

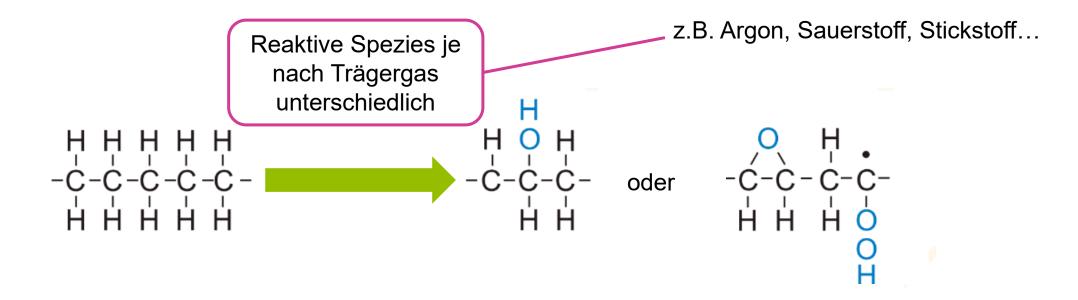
Legende:

Molekül •

Ionen ••

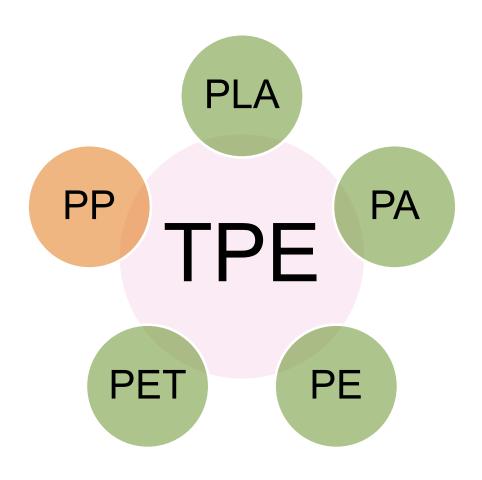
Freie Elektronen

Angeregte Moleküle •


Anwendung von Plasmabehandlungen

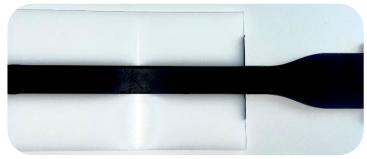
- Prozessvorbereitung
- ➤ Reinigung durch partielle Erhitzung, Trocknung, Ionisation
- 2. Aktivierung
- > Adhäsion verbessern, Benetzbarkeit erhöhen
- 3. Beschichtung
- ➤ Plasmapolymerisation (Hydrophobe-, Hydrophile-, Antibakterielle-,... Barriereschichten)
- 4. Entgraten
- ➤ Entfernen von Graten, Ziehfäden und scharfer Kanten nach Spritzguss

Aktivierung von Polymeroberflächen:



Zunahme der Benetzbarkeit

Anforderungsprofil für Biokunststoffe


- > Biobasiert
- ➤ Nicht leitfähig
- ➤ Spritzgusstyp
- > Chemikalienresistenz
- > Lebensmittelkontaktgeeignet

- Fertigstellung Plasmaadapter und anschließend Implementierung in den Spritzgussprozess
- > Parameterfindung für idealen Prozessablauf
- ➤ Herstellung erster Prüfkörper

Quelle: IfBB

Quelle: IfBB

Zusammenfassung

Herausforderung:

➤ Biobasierte Kunststoffe zeigen andere Oberflächeneigenschaften als erdölbasierte Materialien, Haftungsprobleme bei Materialkombinationen

Lösung:

> Einsatz von Plasmabehandlungen zur gezielten Oberflächenaktivierung und -funktionalisierung

Wirkprinzip:

> Reaktive Spezies verändern die Polymeroberfläche und ändern die Benetzbarkeit

Ausblick:

> Integration des Plasmaadapters in den Spritzgussprozess und Optimierung der Prozessparameter

Vielen Dank für Ihre Aufmerksamkeit!

Unser nächstes Webinar:

20. November:
Strahlenvernetzung
Aufwertung von technischen Biopolymeren

Kontakt:

Chayenne Witte, M.Sc.

Hochschule Hannover

IfBB – Institut für Biokunststoffe und Bioverbundwerkstoffe

Heisterbergallee 10A

30453 Hannover

+49 511-9296-8046

Chayenne-maries.witte@hs-hannover.de

www.ifbb-hannover.de

