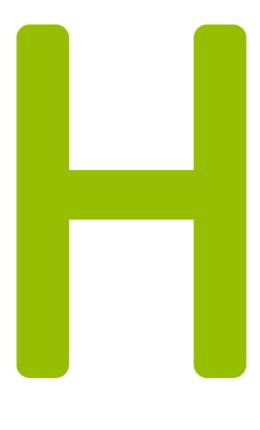
#### HOCHSCHULE HANNOVER

UNIVERSITY OF APPLIED SCIENCES AND ARTS

\_

Fakultät II Maschinenbau und Bioverfahrenstechnik




IfBB-Webinarreihe Biowerkstoffe im Fokus

**Markus Kammer** 

28.11.2024







- 1. EINFÜHRUNG
- 2. EXTRUSION
- 3. MATERIALANALYSE
- 4. SIMULATIONSERGEBNISSE

## Projektdaten ComEx



Projekttitel: Computersimulation in der Extrusionstechnik für

maßgeschneiderte Biokunststoffe und

Bioverbundwerkstoffe

Akronym: ComEx

Laufzeit: 01.07.2021 bis 31.12.2023 → Verlängerung bis

30.06.2024

Förderung: Bundesministerium für Bildung und Forschung

(BMBF)

Projektträger: Projektträger Jülich (PTJ)

Förderkennzeichen: 031B1113B

Projektleitung am IfBB: Prof. Dr.-Ing. Andrea Siebert-Raths

Projektbearbeitung am IfBB: Marie Tiemann, Markus Kammer,

Jan Kuckuck, Anna Dörgens

BEAUFTRAGT VOM





## Projektziele



# Verbesserung der Annahme und Anwendung von biobasierten Kunststoffen



Schaffung einer Werkstoffdatenbasis für Simulationszwecke biobasierter Kunststoffe



Simulation des Extrusionsprozesses im Doppelschneckenextruder



Validierung der Datenbasis und der Simulation zur Demonstration der Praxistauglichkeit

## Hintergrund





Biopolymere werden aufgrund mangelnder Prozesserfahrung wenig verwendet



Prozessoptimierung und Umstellung oft kosten- und zeitintensiv



3D-Fließsimulationen können "Trial-and-Error" ohne Beeinträchtigung des laufenden Prozesses ersetzen



Aktuell fehlt die Datengrundlage für weitreichende Prozesssimulationen



## Kooperationspartner



Projektpartner
IANUS Simulation GmbH

CFD-Simulation



### Unterstützung KraussMaffei Extrusion GmbH

- Extruderbauteile
- verfahrenstechnische Beratung

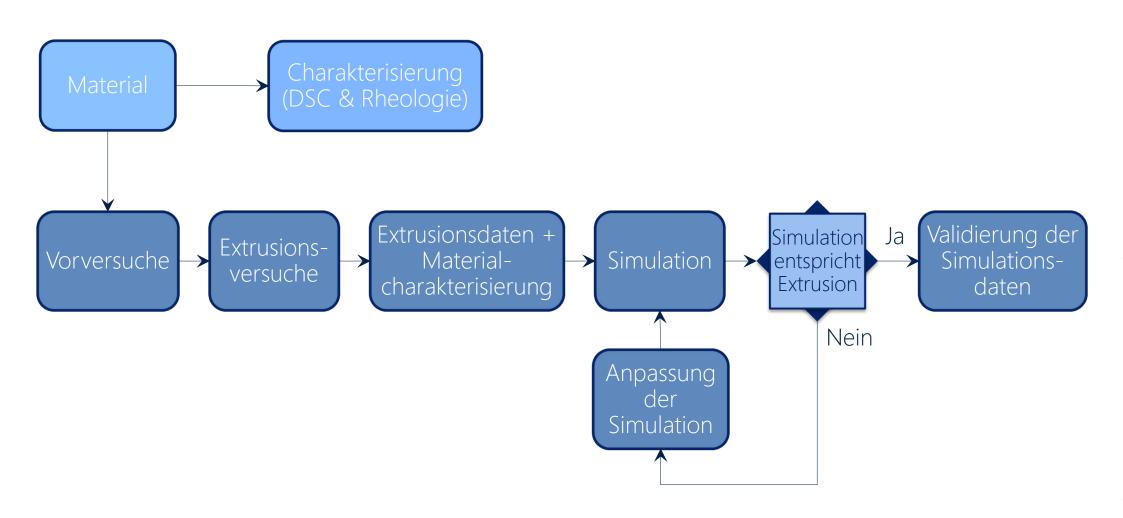


Pioneering Plastics

## Aufgabenbereiche








- Identifikation repräsentativer Materialien
- Durchführung von Extrusionsversuchen
- Aufnahme von Materialkennwerten
- Validierung der Simulationsergebnisse

- Simulation der Extrusionsprozesse
- Bereitstellung und Erarbeitung der Simulationssoftware
- Einarbeitung der erzielten Prozessdaten in die Simulation

## Projektablauf





### Materialien



Polyethylen

Polyethylenterephthalat Polylactide

Polyhydroxyalkanoate

PE 
rPE 
Bio-PE

PET ✓ rPET ✓ Bio-PET✓



PHB (optional)

## Erhobene Daten für die Simulation



### Extrusionsdaten

### Materialdaten

Gehäusetemperaturen

Fließfähigkeiten (MFR/MVR-Werte)

Massetemperaturen

Viskositätskurven

Prozessdrücke (an vier relevanten Positionen)







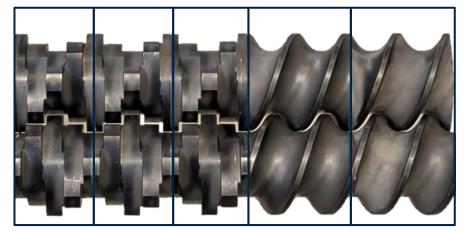
### Anwendungen in der Verfahrenstechnik:

- Aufschmelzen von Kunststoffen
- Einarbeiten von Füllstoffen, Fasern, Additiven, etc.
- Druckaufbau für folgende Verfahrensschritte

| Druckaufbau | Mischzone | Dispergierzone | Aufschmelzzone | Dosierung |
|-------------|-----------|----------------|----------------|-----------|
|             |           |                |                |           |
|             |           |                |                |           |
|             |           |                |                |           |
|             |           |                |                |           |
|             |           | <del></del>    |                |           |

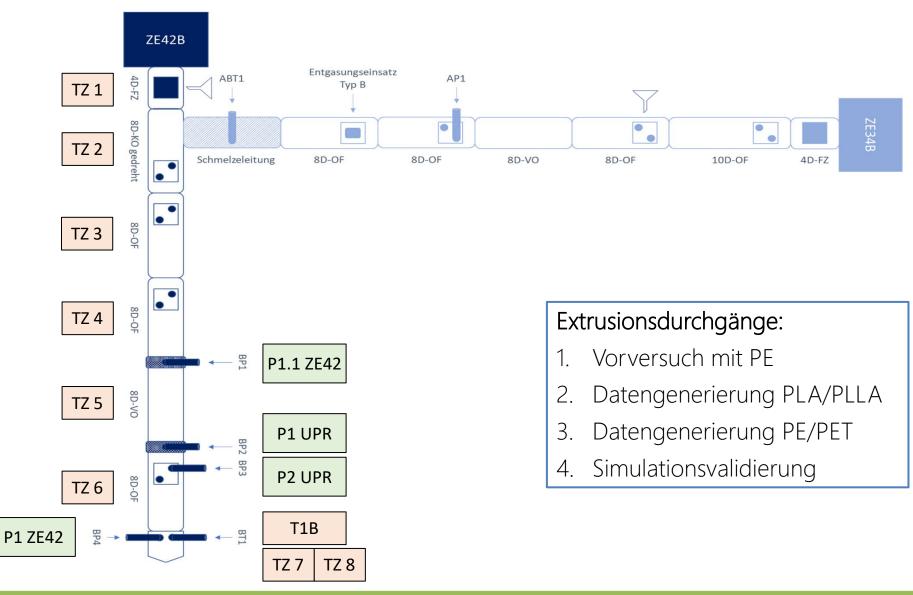
## Doppelschneckenextruder




### **Stellschrauben**

- Schneckengeometrie
  - Extruderschnecken bestehen aus Einzelelementen
  - Elemente erfüllen spezifische Aufgaben
  - Schneckengeometrie auf Materialien angepasst
- Drehzahl
- Verarbeitungstemperatur
- Düsengeometrie
  - Lochdurchmesser
  - Lochzahl
  - Form (z.B. Profilextrusion)

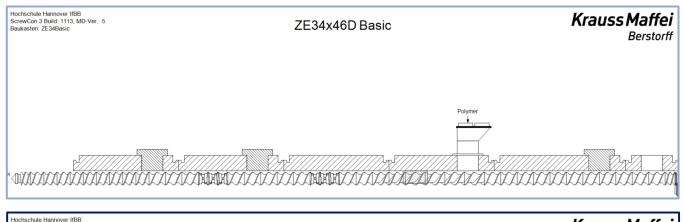



### Knetelemente

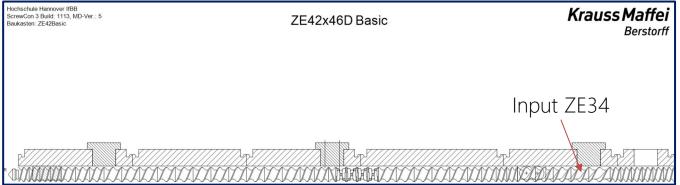
### Förderelemente






## Extrusionsaufbau




## Schneckenaufbau Vorversuch: PE



**Grund:** Die Betriebsart des Extruders mit der Simulation abstimmen, um wenig Materialausschuss zu erzeugen und zuverlässige Ergebnisse zu generieren.



Schneckenkonfiguration ZE34B



Schneckenkonfiguration ZE42B

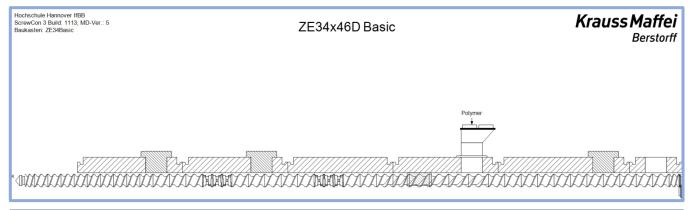
Variation der Drehzahl n:

100 min<sup>-1</sup> 150 min<sup>-1</sup> 200 min<sup>-1</sup>

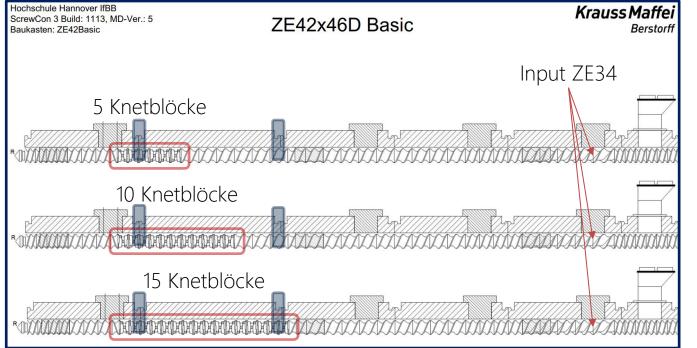
## Extrusionsaufbau






## Extrusionsaufbau






# Schneckenaufbau Hauptversuche: PLA/PLLA/PE/PET



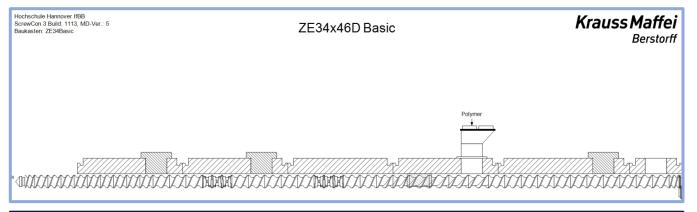


Schneckenkonfiguration ZE34B

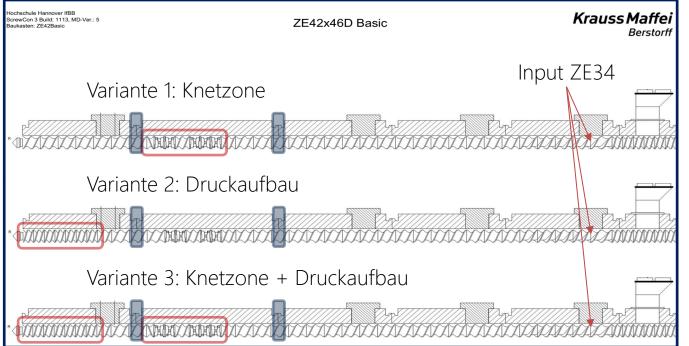


Schneckenkonfiguration 7F42B

Variation der Drehzahl n: (PLA/PLLA)


100 min<sup>-1</sup> 200 min<sup>-1</sup> 300 min<sup>-1</sup>

Variation der Drehzahl n: (PE/PET)


100 min<sup>-1</sup> 300 min<sup>-1</sup> 500 min<sup>-1</sup>

# Schneckenaufbau Validierungsversuche: PLA





Schneckenkonfiguration ZE34B



Schneckenkonfiguration ZE42B

Variation des Durchsatzes **m**: 30 kg/h 50 kg/h 70 kg/h

Variation der Drehzahl n: 100 min<sup>-1</sup> 300 min<sup>-1</sup> 500 min<sup>-1</sup>

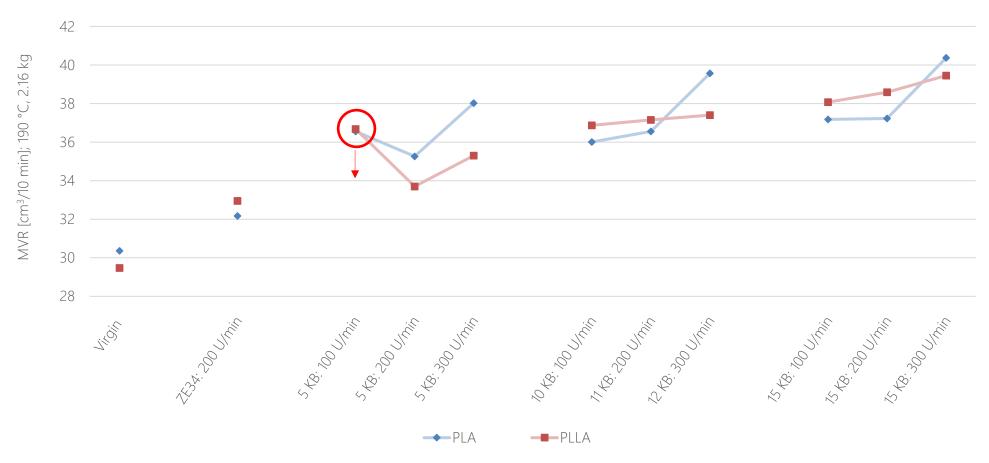
# Versuchsplan Validierungsversuche: PLA



| Parameternummer | Verwendete Extrusionsschnecke | Drehzahl in min-1 | Durchsatz in kg/h |
|-----------------|-------------------------------|-------------------|-------------------|
| 1               | SimVal1 Knetzone              | 100               | 50                |
| 2               | SimVal1 Knetzone              | 300               | 30                |
| 3               | SimVal1 Knetzone              | 300               | 50                |
| 4               | SimVal1 Knetzone              | 300               | 70                |
| 5               | SimVal1 Knetzone              | 500               | 50                |
|                 |                               |                   |                   |
| 6               | SimVal2 Druckaufbau           | 100               | 50                |
| 7               | SimVal2 Druckaufbau           | 300               | 30                |
| 8               | SimVal2 Druckaufbau           | 300               | 50                |
| 9               | SimVal2 Druckaufbau           | 300               | 70                |
| 10              | SimVal2 Druckaufbau           | 500               | 50                |
|                 |                               |                   |                   |
| 11              | SimVal3 Knetzone+Druckaufbau  | 100               | 50                |
| 12              | SimVal3 Knetzone+Druckaufbau  | 300               | 30                |
| 13              | SimVal3 Knetzone+Druckaufbau  | 300               | 50                |
| 14              | SimVal3 Knetzone+Druckaufbau  | 300               | 70                |
| 15              | SimVal3 Knetzone+Druckaufbau  | 500               | 50                |



# Fließfähigkeit (MFR/MVR)



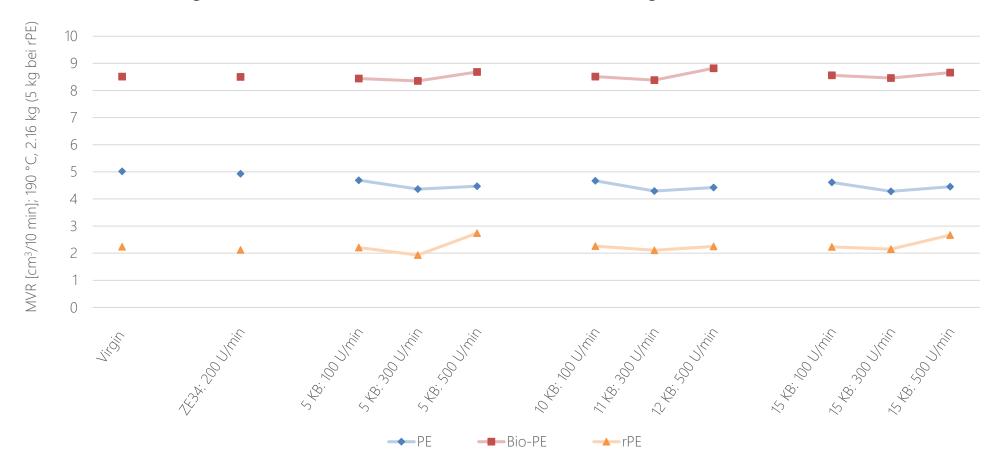

- Melt Mass Flow Rate (MFR) bzw. Melt Volume Flow Rate (MVR)
- Beschreibt die Fließfähigkeit von Kunststoffschmelzen
- ISO 1133-1 /-2
- Einstellungen:
  - Auflagegewicht
  - Messtemperatur
- Abzuleitende Materialeigenschaften:
  - molekularer Kettenabbau
  - mechanische Eigenschaften



## Fließfähigkeiten im Vergleich

Fließfähigkeit von PLA/PLLA bei variierenden Knetblock-Konfigurationen und Drehzahlen




### tendenziell steigende Fließfähigkeit:

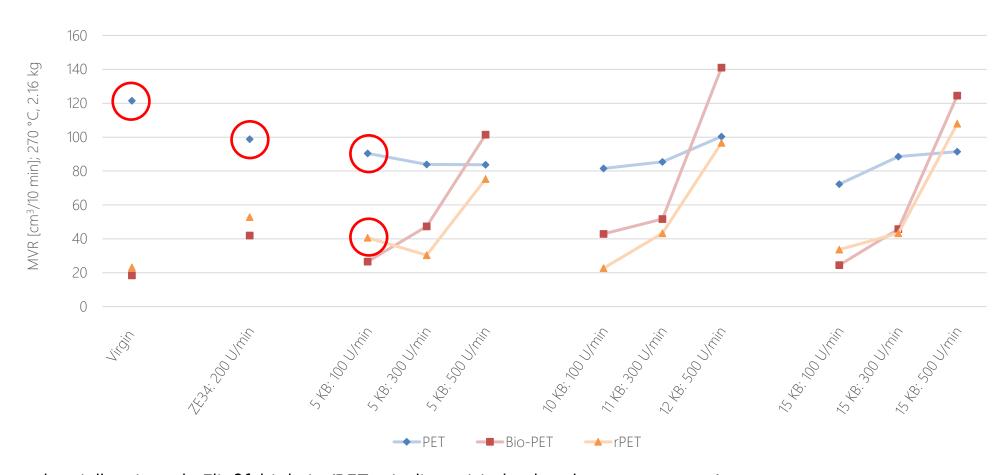
→ Viskosität nimmt ab und damit auch die dynamischen Langzeiteigenschaften und die Schlagzähigkeiten



## Fließfähigkeiten im Vergleich

Fließfähigkeit von PE bei variierenden Knetblock-Konfigurationen und Drehzahlen




### tendenziell (gering) steigende Fließfähigkeit:

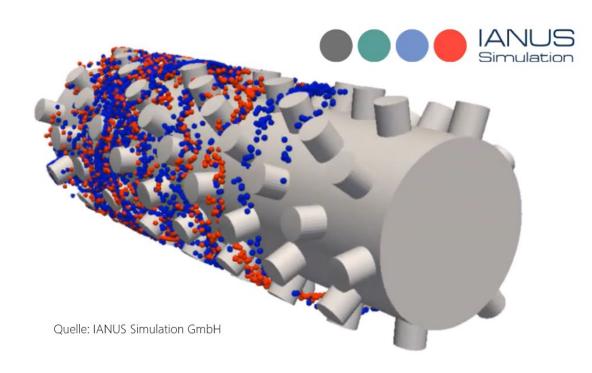
→ Viskosität nimmt ab und damit auch die dynamischen Langzeiteigenschaften und die Schlagzähigkeiten



## Fließfähigkeiten im Vergleich

Fließfähigkeit von PET bei variierenden Knetblock-Konfigurationen und Drehzahlen




tendenziell steigende Fließfähigkeit: (PET mit dieser Methode schwer zu messen)

→ Viskosität nimmt ab und damit auch die dynamischen Langzeiteigenschaften und die Schlagzähigkeiten



### Simulation



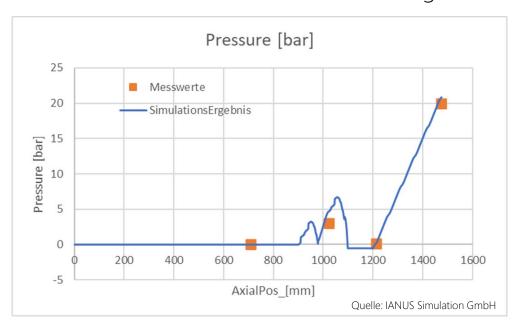


### 3D-CFD-Simulation: (Computational Fluid Dynamics)

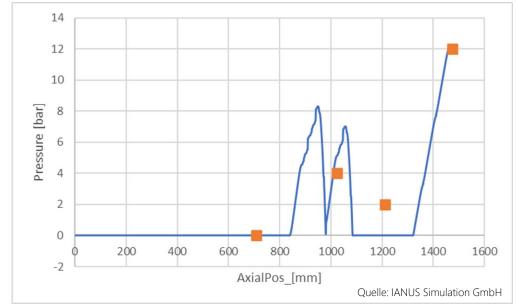
- computergestützte numerische Methode zur Analyse und Vorhersage von Strömungsverhalten und -phänomenen in Fluiden
- erfasst das Fließverhalten der Kunststoffschmelze detailliert
- Materialverteilung und Druckaufbau im Extruder



# Simulationsergebnisse


| Parameternummer | Verwendete Extrusionsschnecke | Drehzahl in min <sup>-1</sup> | Durchsatz in kg/h |
|-----------------|-------------------------------|-------------------------------|-------------------|
| 1               | SimVal1 Knetzone              | 100                           | 50                |
| <b>2</b>        | SimVal1 Knetzone              | 300                           | 30                |
| 3               | SimVal1 Knetzone              | 300                           | 50                |
| 4               | SimVal1 Knetzone              | 300                           | 70                |
| 5               | SimVal1 Knetzone              | 500                           | 50                |
|                 |                               |                               |                   |
| 6               | SimVal2 Druckaufbau           | 100                           | 50                |
| 7               | SimVal2 Druckaufbau           | 300                           | 30                |
| 8               | SimVal2 Druckaufbau           | 300                           | 50                |
| 9               | SimVal2 Druckaufbau           | 300                           | 70                |
| 10              | SimVal2 Druckaufbau           | 500                           | 50                |
|                 |                               |                               |                   |
| 11              | SimVal3 Knetzone+Druckaufbau  | 100                           | 50                |
| 12              | SimVal3 Knetzone+Druckaufbau  | 300                           | 30                |
| 13              | SimVal3 Knetzone+Druckaufbau  | 300                           | 50                |
| 14              | SimVal3 Knetzone+Druckaufbau  | 300                           | 70                |
| 15              | SimVal3 Knetzone+Druckaufbau  | 500                           | 50                |

# Simulationsergebnisse



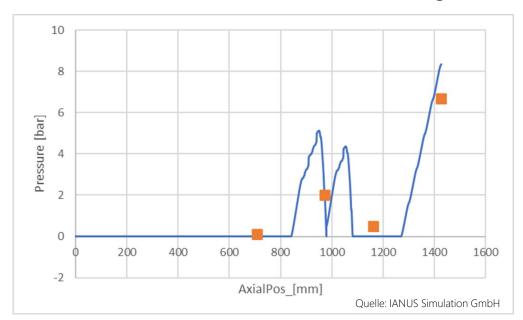

### Vergleich des Prozessdrucks von Simulation und Messwerten bei unterschiedlicher Drehzahl

#1: Drehzahl 100 min<sup>-1</sup>, Durchsatz 50 kg/h

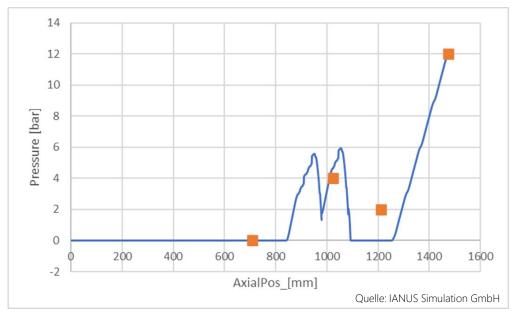


#5: Drehzahl 500 min<sup>-1</sup>, Durchsatz 50 kg/h






# Simulationsergebnisse




### Vergleich des Prozessdrucks von Simulation und Messwerten bei unterschiedlichem Durchsatz

### #2: Drehzahl 300 min<sup>-1</sup>, Durchsatz 30 kg/h



#4: Drehzahl 300 min<sup>-1</sup>, Durchsatz 70 kg/h







## Vielen Dank für Ihre Aufmerksamkeit!

#### Kontakt:

Hochschule Hannover
IfBB – Institut für Biokunststoffe und
Bioverbundwerkstoffe
Heisterbergallee 10A
30453 Hannover

#### Markus Kammer

Tel.: 0511 / 9296 - 7239

E-Mail: markus.kammer@hs-hannover.de







| Polymer | Hersteller        | Тур                    |
|---------|-------------------|------------------------|
| Bio-PE  | Braskem / FKuR    | STHA 7260              |
| Bio-PE  | Braskem / FKuR    | STHC 7260              |
| Bio-PE  | Braskem / FKuR    | STHG 7252NS            |
| PE      | Lyondellbasell    | Lupolen 2420k          |
| rPE     | Vogt Plastic      | HDPE Regranulat        |
| Bio-PET | FKuR              | Eastlon CB-602AB       |
| PET     | Indorama Ventures | Luxyclear PET 702K     |
| rPET    | Barlog Plastics   | KEBALLOY ECO FE 220404 |
| PLA     | NatureWorks       | Ingeo 3251D            |
| PLLA    | Total Corbion     | Luminy L105            |
| PHB     | Biomer            | Biomer P304            |