HOCHSCHULE HANNOVER

UNIVERSITY OF APPLIED SCIENCES AND ARTS

_

Fakultät II Maschinenbau und Bioverfahrenstechnik



Daniela Jahn – Hochschule Hannover

Tagung: Biobasierte Kunststoffe kompakt

Hannover, 14.09.2017

- 1. ROHSTOFFE
- 2. QUALITÄTSSICHERUNG
- 3. EINSATZ VERSCHIEDENER ADDITIVE / RESTSTOFFE
- 4. MATERIALENTWICKLUNG
- 5. RECYCLINGVERSUCH
- 6. ZERTIFIZIERUNG

1. Rohstoffe

Biobasierte Kunststoffe bestehen aus:

Nachwachsenden Rohstoffen (NaWaRo)

Rohstoffe für biobasierte Kunststoffe sind:

- Zuckerrübe, Zuckerrohr → Zucker (PLLA, Bio-PE, PHB, Bio-PET)
- Mais, Kartoffeln, Weizen

 Stärke (PLA, Stärkebasierte Kunststoffe)
- Holz → Lignin, Cellulose (CA)
- Rizinusöl → Pflanzenöle (PUR, Bio-PA)

Durch biotechnologische Prozesse erfolgt die Umwandlung zum biobasierten Kunststoff.

Ein Vorurteil bezüglich der NaWaRo-Rohstoffbasis:

- Qualität der Rohstoffe aufgrund von Wetterschwankungen nicht gleichbleibend
- Detaillierte Informationen zu einzelnen Prozessrouten finden Sie unter: <u>www.ifbb-hannover.de</u>

2. Qualitätssicherung – Matrices

Gewährleistung dauerhaft gleichbleibender Qualitäten der Rohstoffe (Matrices):

- \triangleright Prozesssicherheit (Verarbeitung: Fleißeigenschaft, Schmelztemperatur usw. \rightarrow Zykluszeit)
- ➤ Gleichbleibende Materialeigenschaften / Produkteigenschaften

Materialien:

Biobasierte Kunststoffe (PLA, PLLA, PHA, Bio-PA usw.)

Ermittlung verschiedener Materialkennwerte einzelner Chargen:

- Thermische Analyse: DSC → Schmelzpunkt, Glasübergangstemperatur, Kristallisationsgrad, HDT-B
- Rheologische Untersuchungen: MFR
- Mechanische Eigenschaft: Zugfestigkeit, Zug-E-Modul, Schlagzähigkeit

Ergebnisse:

• Gleichbleibende Qualitäten der Rohstoffe/ Matrices (besonders bei großen Firmen mit hohen Produktionskapazitäten)

3. Einsatz verschiedener Additive

Grund für den Einsatz von Additiven:

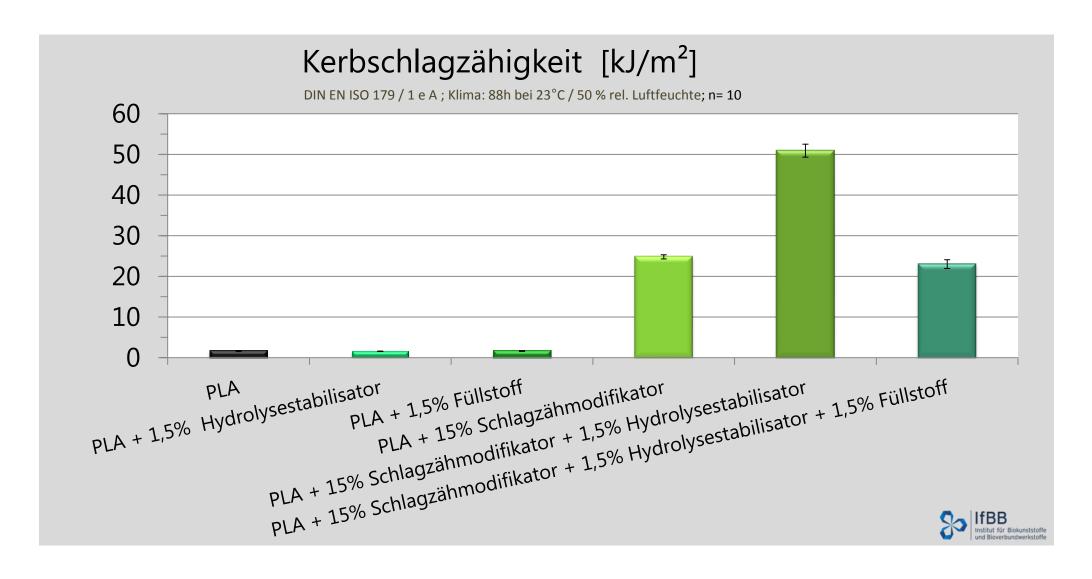
• Optimierung der Eigenschaften / Verarbeitung eines Kunststoffes

Arten der Additive:

- Hydrolysestabilisatoren
- Füllstoffe / Verstärkungsstoffe (Talk, Fasern, Reststoffe)
- Schlagzähmodifikatoren
- Weichmacher
- Nukleierungsmittel
- Haftvermittler
- Usw.

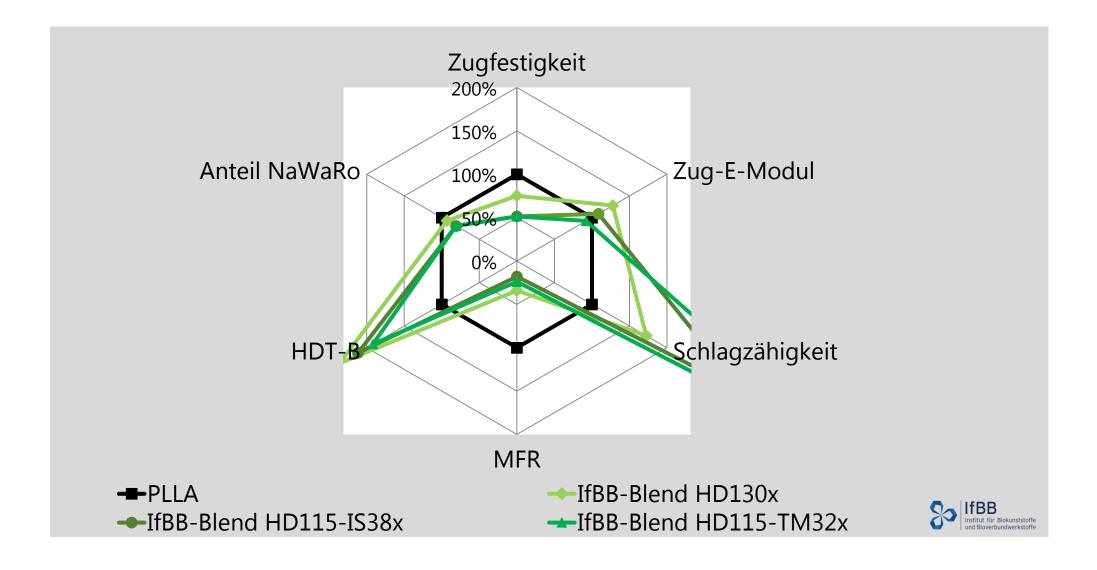
Ziel:

- Wirkungsweise in verschiedenen Matrices / verschiedenen Konzentrationen
- Aufzeigen möglicher Wechselwirkungen durch den Einsatz verschiedener Additive


3. Einsatz verschiedener Additive - Abhängigkeiten-

Additiv	Zykluszeit [sec]	Zugfestigkeit [MPa]	Zug-E-Modul [MPa]	Schlagzähigkeit [kJ/m2]	HDT-B [°C]	MFR [g/10min]
Hydrolysestabilisator	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\longleftrightarrow	\longleftrightarrow
Hydrolysestabilisator / Vernetzter	1	\longleftrightarrow	\leftrightarrow	\longleftrightarrow	\longleftrightarrow	\downarrow
Füllstoff	\	↓	1	\	\leftrightarrow	Ţ
Schlagzäh- modifikator	1	\	\downarrow	1	\	\downarrow
Weichmacher	\	↓	1	1	↓	1
Nukleierungsmittel	\downarrow	\	1	\	↔/↑	1/↓
Faser	↓/↑	\	1	\	↔/↑	↓

3. Einsatz verschiedener Additive -Wechselwirkungen-

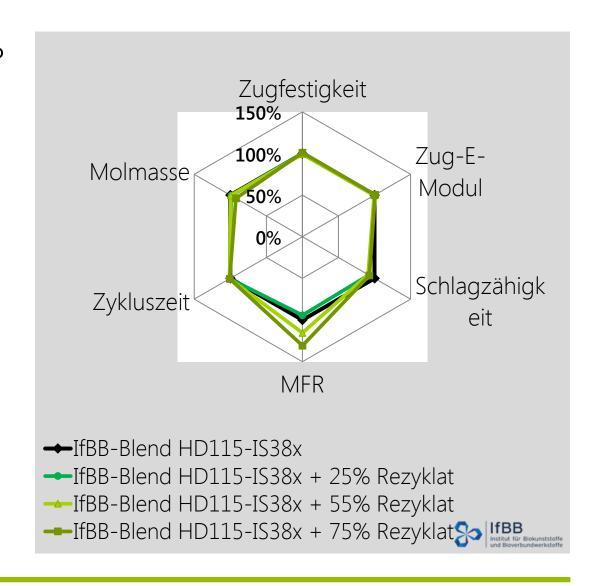


4. Entwicklung der IfBB-Blends -Office-Bereich-

5. Recyclingversuch -IfBB-Blend HD115-IS38x-

Pre-Consumer-Recycling: Angüsse / Ausschussmaterial

- Ausgangsmaterial: IfBB-Blend HD115-IS38x
- Spritzgießtechnische Verarbeitung (KM 50 -180AX / 100 °C Werkzeugtemperatur) des Material zu einem Bauteil (Zugstab – Typ 1A)
- Angüsse / Ausschussmaterial werden gesammelt und mechanisch zerkleinert
- Einarbeitung des zerkleinerten Ausschussmaterials in das Ausgangsmaterial (5 75 wt-%)


5. Recyclingversuch

-Pre-Consumer-Recycling

IfBB-Blend HD115-IS38x mit bis zu 75 % Rezyklat:

- Keine signifikanten Veränderung des Zug-E-Moduls, Zugfestigkeit, HDT-B, Zykluszeit
- MFR 1
- Schlagzähigkeit↓
- Molmasse ↓ (max. 8%)
 - Trotz erhöhtem MFR ist der Molmassenabbau nur gering.
- Spritzgießparameter müssen angepasst werden (Kühlzeit, Einspritzgeschwindigkeit usw.).
- Verwendung des Ausschussmaterials möglich

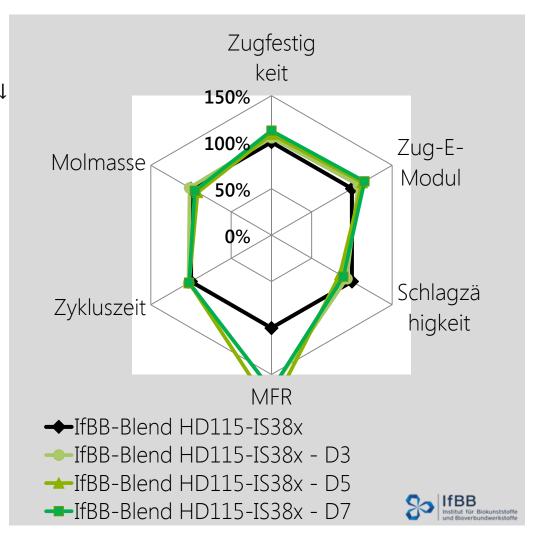
5. Recyclingversuch

-Kaskadennutzung-

Kaskadennutzung – Material: IfBB-Blend HD115-IS38x

- Spritzgießtechnische Verarbeitung (KM 50 -180AX / 100 °C Werkzeugtemperatur) des Material zu einem Bauteil (Zugstab Typ 1A)
- Bauteil (Zugstab) wird zu 100 % mechanisch zerkleinert
- Aus mechanisch zerkleinertem Material erneute Herstellung eines Bauteils (keine Verwendung von Neuware)
- Bis zu sieben Durchgänge (D1-D7)

5. Recyclingversuch


-Kaskadennutzung-

IfBB-Blend HD115-IS38x mit bis zu acht mal thermischer Belastung:

- Zugfestigkeit ↑, Zug-E-Modul ↑, Schlagzähigkeit ↓
 - ➤ Veränderung der Kristallstruktur
 - > Material wird spröder
- MFR ↑, Zykluszeit ↔
 - ➤ Erhöhte Fließfähigkeit hat keinen Einfluss auf die Zykluszeit
 - ➤ Schnelleres Einspritzen → langsamere Ausbildung der Kristalle
- Molmasse ↓ (ca. 5 % 8 %)
 - ➤ Trotz erhöhtem MFR ist der Molmassenabbau nur gering.
- Spritzgießparameter müssen angepasst werden (Kühlzeit, Einspritzgeschwindigkeit usw.).

Ausblick: Versuche hinsichtlich Langlebigkeit

6. Zertifizierung

-Biobasierter Anteil-

Warum eine Zertifizierung?

- Kundenansprüche an Nachhaltigkeit sind gestiegen
- Transparenz / Vertrauen beim Kunden schaffen
- Abheben von der Konkurrenz
- Labels für die Produktkommunikation verwenden

Wer zertifiziert die Materialien?

- DIN CERTCO: biobasierter Kunststoff, ASTM D6866
- Vincotte: biobasierter Kunststoff, ASTM D6866
- ASTM D6866: Kohlenstoff-Anteil des Materials wird analysiert \rightarrow angegeben wird der biobasierte Anteil als Anteil des biobasierten Kohlenstoffs am Gesamtkohlenstoff [%]
- DIN-geprüftes biobasiertes Zertifikat ist für fünf Jahre gültig

6. Zertifizierung -IfBB-Blends-

IfBB-Blend HD130x

IfBB-Blend HD115-IS38x

